RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Finite element model of ocular injury in abusive head trauma.

PURPOSE: To develop a finite element analysis of the eye and orbit that can be subjected to virtual shaking forces.

METHODS: LS-DYNA computer software was used to design a finite element model of the human infant eye, including orbit, fat, sclera, retina, vitreous, and muscles. The orbit was modeled as a rigid solid; the sclera and retina as elastic shells; the vitreous as viscoelastic solid or Newtonian fluid; and fat as elastic or viscoelastic solid. Muscles were modeled as spring-damper systems. Orbit-fat, fat-sclera, sclera-retina, and vitreous nodes-retina interfaces were defined with the use of the tied surface-surface function in LS-DYNA. The model was subjected to angular acceleration pulses obtained from shaking tests of a biofidelic doll (Aprica 2.5 kg dummy). Parametric studies were conducted to evaluate the effect of varying the material properties of vitreous/fat on maximum stress and stress distribution.

RESULTS: With the vitreous modeled as a Newtonian fluid, the repeated acceleration-deceleration oscillatory motion characteristic of abusive head trauma (AHT) causes cumulative increases in the forces experienced at the vitreoretinal interface. Under these vitreous conditions, retinal stress maximums occur at the posterior pole and peripheral retina, where AHT retinal hemorrhage is most often found.

CONCLUSIONS: Our model offers an improvement on dummy and animal models in allowing analysis of the effect of shaking on ocular tissues. It can be used under certain material conditions to demonstrate progressive "stacking" of intraocular stresses in locations corresponding to typical AHT injury patterns, allowing a better understanding of the mechanisms of retinal hemorrhage patterns.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app