JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Extraneural versus intraneural stimulation thresholds during ultrasound-guided supraclavicular block.

Anesthesiology 2009 June
BACKGROUND: A stimulation current of no more than 0.5 mA is regarded as safe in avoiding nerve injury and delivering adequate stimulus to provoke a motor response. However, there is no consistent level of stimulating threshold that reliably indicates intraneural placement of the needle. The authors determined the minimally required stimulation threshold to elicit a motor response outside and inside the most superficial part of the brachial plexus during high-resolution, ultrasound-guided, supraclavicular block.

METHODS: After institutional review board approval, ultrasound-guided, supraclavicular block was performed on 55 patients. Patients with neurologic dysfunction were excluded. Criteria for extraneural and intraneural stimulation were defined and assessed by independent experts. To determine success rate and any residual neurologic deficit, qualitative sensory and motor examinations were performed before and after block placement. At 6 month follow-up, the patients were examined for any neurologic deficit.

RESULTS: Thirty-nine patients met all set stimulation criteria. Median +/- SD (interquartile range) minimum stimulation threshold outside was 0.60 +/- 0.37 mA (0.40, 1.0) and inside 0.30 +/- 0.19 mA (0.20, 0.40). The difference of 0.30 mA was statistically significant (P < 0.0001). Stimulation currents of 0.2 mA or less were not observed outside the trunk in any patient. Significantly higher thresholds were observed in diabetic patients. Success rate was 100% after 20 min. Thirty-four patients had normal sensory and motor examination at 6 months. Five patients were lost to follow-up.

CONCLUSION: Within the limitations of this study and the use of ultrasound, a stimulation current of 0.2 mA or less is reliable to detect intraneural placement of the needle. Furthermore, stimulation currents of more than 0.2 and no more than 0.5 mA could not rule out intraneural position.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app