JOURNAL ARTICLE

New roles for INSL3 in adults

Alberto Ferlin, Anastasia Pepe, Lisa Gianesello, Andrea Garolla, Shu Feng, Arianna Facciolli, Roy Morello, Alexander I Agoulnik, Carlo Foresta
Annals of the New York Academy of Sciences 2009, 1160: 215-8
19416191
Insulin-like factor 3 (INSL3) is produced primarily by testicular Leydig cells and acts by binding to its specific G-protein-coupled receptor, RXFP2 (relaxin family peptide 2). INSL3 is involved in testicular descent during fetal development, and mutations in the INSL3 and RXFP2 genes cause cryptorchidism. The physiological role of INSL3 in adults is not known, although substantial INSL3 circulating levels are present. After extensive clinical, biochemical, and hormonal investigations, including bone densitometry with dual energy X-ray absorptiometry, on 25 young men (age, 27-41 years) who have the well-characterized T222P mutation in the RXFP2 gene, we found that 16 of them (64%) had significantly reduced bone density. No other cause of osteoporosis was evident in these subjects, whose testosterone and gonadal function were normal. Expression analysis of INSL3 and RXFP2 on human bone biopsy and human and mouse osteoblast cell cultures performed by reverse transcription-PCR and immunohistochemistry showed the presence of RXFP2 in these cells. Real-time cAMP imaging analysis and proliferation assays under the stimulus of INSL3 showed a dose- and time-dependent increase in cAMP and cell proliferation, and specific osteoblast gene activation was observed by real-time PCR after INSL3 stimulation. Lumbar spine and femoral bone of Rxfp2-deficient mice were studied by static and dynamic histomorphometry and micro-computed tomography, respectively, and showed decreased bone mass, mineralizing surface, bone formation, and osteoclast surface compared to wild-type littermates, compatible with a functional osteoblast impairment. This study identified for the first time a role for INSL3 in adults, demonstrating a modulating effect on bone metabolism and linking RXFP2 gene mutations with human osteoporosis.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19416191
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"