JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Delayed hemolytic transfusion reaction in sickle cell disease patients: evidence of an emerging syndrome with suicidal red blood cell death.

Transfusion 2009 September
BACKGROUND: Delayed hemolytic transfusion reaction (DHTR) is a life-threatening complication in sickle cell disease (SCD) characterized by recurrence of disease complications, recipient red blood cell (RBC) destruction, and frequently no detectable antibody. Phosphatidylserine (PS) exposure signs suicidal RBC death or eryptosis and is involved in vasoocclusive crisis (VOC).

STUDY DESIGN AND METHODS: Transfusion was monitored in 48 SCD patients for up to 20 days. PS exposure was evaluated in vivo on patient RBCs (PS-RBCs) at five time points and in vitro after incubation of donor RBCs with pretransfusion plasma.

RESULTS: Three VOC patients displayed DHTR with recurrent SCD features and no detectable antibody in two cases. In vitro, PS-RBC percentage was significantly increased by incubating donor RBCs with pretransfusion plasma samples from DHTR patients with no detectable antibody. No such increase was observed with samples from other patients. This result indicates that donor RBCs may be damaged by the environment of SCD patients, increasing the physiologic clearance of apoptotic RBCs. In vivo, PS-RBC percentage increased in all three cases after destruction of transfused RBCs, indicating that DHTR induces PS-RBCs and, possibly, subsequent VOC and autologous RBC destruction.

CONCLUSION: This study clearly demonstrates that DHTR can occur in the absence of detectable antibody. In these cases, a mechanism of excessive eryptosis is proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app