JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells.

To identify the neuroprotective effect of dieckol, a hexameric compound of phloroglucinol isolated from marine brown alga, Ecklonia cava , this study investigated the anti-inflammatory effect of dieckol on lipopolysaccharide (LPS)-stimulated murine BV2 microglia and elucidated the molecular mechanism. The results showed that dieckol suppresses LPS-induced production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner, without causing cytotoxicity. It also significantly reduced the generation of proinflammatory cytokines, such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Moreover, dieckol significantly reduced LPS-induced nuclear factor κB (NF-κB) and p38 mitogen-activated protein kinases (MAPKs) activation, as well as reactive oxygen species (ROS) production. Taken together, the inhibition of LPS-induced NO and PGE(2) production might be due to the suppression of NF-κB and p38 MAPK signal pathway and, at least in part, by inhibiting the generation of ROS. Hence, these effects of dieckol might assist therapeutic treatment for neurodegenerative diseases that are accompanied by microglial activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app