IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibition of endoplasm reticulum stress by ghrelin protects against ischemia/reperfusion injury in rat heart.

Peptides 2009 June
Ghrelin is a multi-functional polypeptide with cardiovascular protective effects. We aimed to explore whether the cardioprotective effect of ghrelin is mediated by inhibiting myocardial endoplasmic reticulum stress (ERS). A Langendorff model of isolated rat heart was used with ischemia/reperfusion (I/R; 40/120 min). Cardiac function was monitored, and histomorphologic features, degree of myocardial injury, level of ERS markers, and number of apoptotic cardiomyocytes were determined. Compared with control group, the I/R group showed significantly decreased cardiac function, seriously damaged myocardial tissue, increased number of apoptotic cells, and overexpression of mRNA and protein of ERS markers. However, preadministration of ghrelin in vivo (10(-8)mol/kg, intraperitoneal injection, every 12h, twice in all) greatly ameliorated the damaged heart function, attenuated myocardial injury and apoptosis, and decreased the expression of ERS markers: it decreased the mRNA and protein levels of glucose-regulated protein78 (GRP78) and C/EBP homologous protein (CHOP), with reduced caspase-12 protein expression. Furthermore, in vitro, ghrelin directly inhibited the myocardial ERS response induced by tunicamycin or dithiothreitol in rat cardiac tissue. Ghrelin could protect the heart against I/R injury, at least in part, through inhibiting myocardial ERS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app