JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems.

This paper presents a self-organizing control system based on cerebellar model articulation controller (CMAC) for a class of multiple-input-multiple-output (MIMO) uncertain nonlinear systems. The proposed control system merges a CMAC and sliding-mode control (SMC), so the input space dimension of CMAC can be simplified. The structure of CMAC will be self-organized; that is, the layers of CMAC will grow or prune systematically and their receptive functions can be automatically adjusted. The control system consists of a self-organizing CMAC (SOCM) and a robust controller. SOCM containing a CMAC uncertainty observer is used as the principal controller and the robust controller is designed to dispel the effect of approximation error. The gradient-descent method is used to online tune the parameters of CMAC and the Lyapunov function is applied to guarantee the stability of the system. A simulation study of inverted double pendulums system and an experimental result of linear ultrasonic motor motion control show that favorable tracking performance can be achieved by using the proposed control system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app