Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bone apposition around two different sandblasted, large-grit and acid-etched implant surfaces at sites with coronal circumferential defects: an experimental study in dogs.

OBJECTIVE: The study was designed to evaluate bone apposition around SLA (sandblasted, large-grit and acid-etched) implants compared with modified SLA (modSLA) ones at sites with different sizes of circumferential gaps.

MATERIAL AND METHODS: All mandibular premolars and first molars of six beagle dogs were extracted. After a healing period of 3 months, three 10-mm-long implants were inserted in each side of the mandible. One implant was inserted with a 0.5-mm and one with a 1-mm gap between the implants and bone around the coronal 5 mm of the implants. The third implant was inserted without a gap as a control. The dogs were sacrificed respectively at weeks 2, 4 and 8 after implant placement for histological and histomorphometric analyses.

RESULTS: The histomorphometric results showed similar pattern of bone apposition for the two surfaces. At 2 and 4 weeks of healing, the percentage of newly formed bone-to-implant contact (BIC%), new bone fill (NBF%) and the distance between the most coronal position of BIC and the defect bottom (B-D) were significantly higher for modSLA (P<0.05). At 8 weeks of healing, this difference was not significant (P>0.05). With regard to the defect size, the histological analyses showed no significant differences between the two defect sizes at all time points (P>0.05).

CONCLUSION: Significantly more bone apposition was found for the modSLA surface than for the SLA surface at early stage of healing, indicating that modSLA surface may enhance bone apposition in coronal circumferential defects at non-submerged implants. Gap size within 1 mm may not need any kind of regenerative procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app