Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

IL-12 delivered intratumorally by multilamellar liposomes reactivates memory T cells in human tumor microenvironments.

Using a novel loading technique, IL-12 is reported here to be efficiently encapsulated within large multilamellar liposomes. The preclinical efficacy of the cytokine loaded liposomes to deliver IL-12 into human tumors and to reactive tumor-associated T cells in situ is tested using a human tumor xenograft model. IL-12 is released in vivo from these liposomes in a biologically active form when injected into tumor xenografts that are established by the subcutaneous implantation of non-disrupted pieces of human lung, breast or ovarian tumors into immunodeficient mice. The histological architecture of the original tumor tissue, including tumor-associated leukocytes, tumor cells and stromal cells is preserved anatomically and the cells remain functionally responsive to cytokines in these xenografts. The local and sustained release of IL-12 into the tumor microenvironment reactivates tumor-associated quiescent effector memory T cells to proliferate, produce and release IFN-gamma resulting in the killing of tumor cells in situ. Very little IL-12 is detected in the serum of mice for up to 5 days after an intratumoral injection of the IL-12 liposomes. We conclude that IL-12 loaded large multilamellar liposomes provide a safe method for the local and sustained delivery of IL-12 to tumors and a therapeutically effective way of reactivating existing tumor-associated T cells in human solid tumor microenvironments. The potential of this local in situ T cell re-stimulation to induce a systemic anti-tumor immunity is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app