Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging.

Biomaterials 2009 August
An encapsulated microbubble (EMB) of a novel construct is proposed to enhance the magnetic resonance imaging contrast by introducing superparamagnetic iron oxide (SPIO) nanoparticles (mean diameter is 12 nm) into the polymer shell of the microbubble. Such microbubble vesicle has nitrogen gas in the core and its mean diameter is 3.98 microm. An in vitro MR susceptibility experiment using a phantom consisting EMBs has shown that the relationship between the transverse relaxation rate R(2) and the Fe(3)O(4) nanoparticle concentration in the shell (the volume fraction of EMBs is kept constant) can be fitted to a linear function and an exponentially growth function is observed between R(2) and the SPIO-inclusion microbubble concentration. The in vivo MRI experiments also show that the SPIO-inclusion microbubbles have longer contrast-enhancement duration time in rat liver than non-SPIO-inclusion microbubbles. An in vitro ultrasound imaging experiment of SPIO-inclusion microbubbles also shows that they can enhance the ultrasound contrast significantly. Additionally, the interaction between the SPIO-inclusion microbubbles and cells indicates that such microbubble construct can retain the acoustic property under the ultrasound exposure by controlling the SPIO concentration in the shell. Therefore, the proposed SPIO nanoparticle-embedded EMBs potentially can become effective MR susceptibility contrast agents while also can be good US contrast agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app