JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Involvement of the interdomain hydrophobic linker and the C-terminal helices in self-association of the molecular chaperone HSC70.

HSP70 from bacteria to man are known to self-associate to form multiple species suggesting that self-association is related to function. In order to determine the structural basis of HSP70 oligomerization, deletion mutants in the C-terminal domain of HSC70, a constitutive member of the HSP70 family, have been constructed and analyzed for their self-association properties by gel electrophoresis, size-exclusion chromatography and analytical ultracentrifugation. The results of this investigation indicate that, whereas deletion of the GGMP rich C-terminal extremity of HSC70, containing EEVD motif stabilizes the oligomeric species, deletions of either the aD-aE C-terminal helices or the inter-domain hydrophobic linker contribute to the stabilization of the monomeric form. Thus, two non-contiguous regions, located at both ends of the C-terminal domain of the protein, appear to form the contact interface in the oligomers and may interact in a dynamic fashion leading to the formation of several coexisting species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app