Add like
Add dislike
Add to saved papers

Biomechanical modeling of decompressive craniectomy in traumatic brain injury.

BACKGROUND: Decompressive craniectomy is the final phase in the graded scheme of critical care management of refractory raised intracranial pressure following severe traumatic brain injury. We aim to define the optimal size for decompressive craniectomy so that a good balance is achieved between reduction of raised ICP and the extent of trans-calvarial herniation. Provision of such quantitative data will also allow for improved data comparison in clinical trials addressing the surgical management of severe head injury.

METHODS: In this study, we utilize a finite element mesh model and focus on the effect of size of both unilateral and bifrontal decompressive craniectomy on intracranial pressure and brain herniation.

FINDINGS: The finite element mesh model is able to effect modeling of brain deformation and intracranial pressure changes following both unilateral fronto-parietal-temporal and bifrontal decompressive craniectomy.

CONCLUSIONS: Finite element mesh modeling in the scenario of reafractory raised intracranial pressure following severe head injury may be able to guide the optimal conduct of decompressive surgery so as to effect a reduction in intracranial pressure whilst minimizing trans-calvarial brain herniation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app