Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid.

A pot experiment was carried out to investigate the effect of exogenous salicylic acid (SA) on the growth, photosynthesis, oxidative stress and responses of chloroplastic antioxidant defense system of maize (Zea mays L.) plants grown in a nickel (Ni)-contaminated soil. The results indicate that exogenous SA significantly decreased the reduction in dry weight, chlorophyll and beta-carotene contents, and net photosynthetic rate of the Ni-stressed maize, demonstrating an alleviating effect of SA on Ni toxicity of plants. Superoxide anion generation rate, H(2)O(2) and malondialdehyde (MDA) contents, and lipoxygenase (LOX, EC 1.13.11.12) activity significantly increased in the chloroplasts of maize exposed to Ni stress, revealing an oxidative damage occurred in maize chloroplasts, whereas, the values of these parameters were markedly lowered in the SA-treated plants under Ni stress. Application of SA significantly enhanced the activities of superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2), and the poll of reduced ascorbate and glutathione in chloroplasts of the Ni-stressed maize. Accordingly, the fact that SA up-regulates the capacity of antioxidant defense system in chloroplasts, thus reducing the oxidative damage, is involved in the SA-induced alleviation of Ni toxicity in maize.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app