JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ni(II)/H(2)O(2) reactivity in bis[(pyridin-2-yl)methyl]amine tridentate ligand system. aromatic hydroxylation reaction by bis(mu-oxo)dinickel(III) complex.

The nickel(II) complexes 1(X) supported by bis[(pyridin-2-yl)methyl]benzylamine tridentate ligands carrying m-substituted phenyl groups (X = OMe, Me, H, Cl, NO(2)) at the 6-position of pyridine donor groups (L(X), N,N-bis[(6-m-substituted-phenylpyridin-2-yl)methyl]benzylamine) have been synthesized and characterized. The X-ray crystallographic analyses have revealed that [Ni(II)(L(H))(CH(3)CN)(H(2)O)](ClO(4))(2) (1(H)), [Ni(II)(L(OMe))(CH(3)CN)(MeOH)](ClO(4))(2) (1(OMe)), [Ni(II)(L(Me))(CH(3)CN)(H(2)O)](ClO(4))(2) (1(Me)), and [Ni(II)(L(Cl))(CH(3)CN)(H(2)O)](ClO(4))(2) (1(Cl)) have a five-coordinate square pyramidal geometry, whereas [Ni(II)(L(NO(2)))(CH(3)CN)(2)(H(2)O)](ClO(4))(2) (1(NO(2))) exhibits a six-coordinate octahedral geometry having an additional CH(3)CN co-ligand. (1)H NMR spectra of the nickel(II) complexes 1(X) in CD(3)CN have indicated that all the complexes have a high spin ground state. The nickel(II) complexes 1(X) react with hydrogen peroxide (H(2)O(2)) in acetone to give bis(mu-oxo)dinickel(III) complexes 2(X) exhibiting a characteristic UV-vis absorption band at approximately 420 nm. In the case of 2(H), a resonance Raman band ascribable to a Ni(2)O(2) core vibration was observed at 611 cm(-1) that shifted to 586 cm(-1) upon H(2)(18)O(2). The bis(mu-oxo)dinickel(III) intermediates 2(X) undergo an efficient aromatic ligand hydroxylation reaction, producing a mononuclear nickel(II)-phenolate complexes 4(X) via a putative intermediate (mu-phenoxo)(mu-hydroxo)dinickel(II) (3(X)). The kinetic studies on the aromatic ligand hydroxylation process including m-substituent effects (Hammett analysis) and kinetic deuterium isotope effects (KIE) have indicated that the reaction of 2(X) to 3(X) involves an electrophilic aromatic substitution mechanism, where C-O bond formation and C-H bond cleavage occur in a concerted manner. Intermediate 3(H) was detected by ESI-MS during the course of the reaction, and the final product 4(H) was characterized by elemental analysis, ESI-MS, and X-ray crystallographic analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app