Antidiabetic and antioxidant potential of ethanolic extract of Butea monosperma leaves in alloxan-induced diabetic mice

Nidhi Sharma, Veena Garg
Indian Journal of Biochemistry & Biophysics 2009, 46 (1): 99-105
The possible protective effect of ethanolic extract of B. monosperma leaves (BMEE) on diabetes and diabetes-induced oxidative stress was evaluated in alloxan (ALXN)-induced diabetic male adult mice. Experimental animals were divided into three groups viz., I, II, and III. Diabetes mellitus (DM) was induced in groups II and III mice by a single intraperitoneal injection of alloxan (150 mg/kg body wt). Group I (control mice) received an equal volume of normal saline. Group III mice were further treated with BMEE (300 mg/kg body wt, p.o.) for a period of 45 days. Body weight and fasting blood glucose (FBG) levels were measured at periodic intervals during the test period. At the end of treatment period, blood was collected by cardiac puncture under mild ether anesthesia and serum was isolated to analyze its lipid profile i.e. serum total cholesterol (TC), triglyceride (TG), high density lipoprotein (HDL), low density lipoprotein (LDL) and very low density lipoprotein (VLDL). The homogenates of hepatic, pancreatic and renal tissues were also analyzed for both enzymatic and non-enzymatic antioxidants, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and total protein (TP). Alloxan injection resulted in a significantly (P < 0.05) increased concentration of FBG level. Besides, the levels of enzymatic and nonenzymatic antioxidants were decreased and TBARS level increased significantly (P < 0.05) in hepatic, pancreatic and renal tissues. Also, serum TC, TG, LDL and VLDL-cholesterol level elevated significantly (P < 0.05), whereas HDL-cholesterol reduced significantly (P < 0.05) in group II (alloxan-treated diabetic control). The FBG level decreased significantly (P < 0.05) after 45 days treatment of BMEE from 172 to 117.143 mg/dl, as compared to normal control (79.286 mg/dl). The activities of antioxidant enzymes (CAT and GSH-Px) and GSH level in hepatic, pancreatic and renal tissues also increased significantly (P < 0.05) in BMEE-treated mice, but the activity of SOD was not improved significantly. BMEE treatment also reduced the TBARS levels and lowered serum lipid profile significantly (P < 0.05). The findings of the present study indicated significant hypoglycemic and anti-oxidant activity in B. monosperma leaves, thus lends credence to its folklore use in the management and/or control of type-2 DM.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"