JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intracellular calcium activates TRPM2 and its alternative spliced isoforms.

Melastatin-related transient receptor potential channel 2 (TRPM2) is a Ca(2+)-permeable, nonselective cation channel that is involved in oxidative stress-induced cell death and inflammation processes. Although TRPM2 can be activated by ADP-ribose (ADPR) in vitro, it was unknown how TRPM2 is gated in vivo. Moreover, several alternative spliced isoforms of TRPM2 identified recently are insensitive to ADPR, and their gating mechanisms remain unclear. Here, we report that intracellular Ca(2+) ([Ca(2+)](i)) can activate TRPM2 as well as its spliced isoforms. We demonstrate that TRPM2 mutants with disrupted ADPR-binding sites can be activated readily by [Ca(2+)](i), indicating that [Ca(2+)](i) gating of TRPM2 is independent of ADPR. The mechanism by which [Ca(2+)](i) activates TRPM2 is via a calmodulin (CaM)-binding domain in the N terminus of TRPM2. Whereas Ca(2+)-mediated TRPM2 activation is independent of ADPR and ADPR-binding sites, both [Ca(2+)](i) and the CaM-binding motif are required for ADPR-mediated TRPM2 gating. Importantly, we demonstrate that intracellular Ca(2+) release activates both recombinant and endogenous TRPM2 in intact cells. Moreover, receptor activation-induced Ca(2+) release is capable of activating TRPM2. These results indicate that [Ca(2+)](i) is a key activator of TRPM2 and the only known activator of the spliced isoforms of TRPM2. Our findings suggest that [Ca(2+)](i)-mediated activation of TRPM2 and its alternative spliced isoforms may represent a major gating mechanism in vivo, therefore conferring important physiological and pathological functions of TRPM2 and its spliced isoforms in response to elevation of [Ca(2+)](i).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app