Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Role of Rac1 GTPase in JNK signaling and delayed neuronal cell death following global cerebral ischemia.

Brain Research 2009 April 11
The overall goal of this study was to determine the role of Rac1 in POSH/MLK/JNK signaling and delayed neuronal cell death following cerebral ischemia. Temporal studies revealed that Rac1 GTPase activation was significantly elevated in hippocampus CA1 at 10 min to 72 h after cerebral ischemia reperfusion, with peak levels 30 min to 6 h after reperfusion. Total Rac1 protein levels were not significantly changed following cerebral ischemia. Rac1 has been shown to interact with POSH (plenty of SH3s), a scaffold protein that binds to and regulates MLK3 and JNK activation. Co-immunoprecipitation (Co-IP) studies revealed that POSH-Rac1-MLK3 complex formation displayed a significant and prolonged elevation after reperfusion, with a correlative increase in phosphorylation/activation of MLK3 as compared to sham controls. Intracerebroventricular administration of Rac1 antisense oligonucleotides (AS-ODNs) significantly attenuated Rac1 levels and Rac1 activation at 30 min after reperfusion, with a correlated significant attenuation of POSH-MLK3-Rac1 complex formation and MLK3 activation in hippocampus CA1. Infusion of Rac1 AS-ODNs also significantly attenuated post-ischemic activation of JNK, downstream of MLK3, and strongly protected the hippocampus CA1 from ischemic damage. Missense oligos had no effect on any of the parameters measured. The Rac1 AS-ODNs results were further confirmed by administration of a Rac1 inhibitor (NSC23766), which markedly attenuated activation of Rac1 and JNK, and significantly attenuated apoptotic delayed neuronal cell death following cerebral ischemia. As a whole, these studies demonstrate an important role for Rac1 in activation of the prodeath MLK3-JNK kinase signaling pathway and delayed neuronal cell death following cerebral ischemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app