Effect of beta-sheet propensity on peptide aggregation

Giovanni Bellesia, Joan-Emma Shea
Journal of Chemical Physics 2009 April 14, 130 (14): 145103
The effect of beta-sheet propensity on the structural features of peptide aggregates was investigated using an off-lattice coarse-grained peptide model. A phase diagram as a function of temperature and beta-sheet propensity reveals a diverse family of supramolecular assemblies. Highly rigid peptides (peptides with high beta-sheet propensity) are seen to assemble predominantly into fibrillar structures. Increasing the flexibility of the peptide (reducing beta-sheet propensity) leads to a variety of structures, including fibrils, beta-barrel structures, and amorphous aggregates. Nonfibrillar entities have been suggested as primary causative agents in amyloid diseases and our simulations indicate that mutations that decrease beta-sheet propensity will decrease fibril formation and favor the formation of such toxic oligomers. Parallels between beta-sheet aggregates and nematic liquid crystals are discussed.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"