JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Androgen sensitivity of prostate epithelium is enhanced by postnatal androgen receptor inactivation.

Postnatal inactivation of epithelial androgen receptor (AR) in prostate epithelial AR knockout (PEARKO) mice results in hindered differentiation but enhanced proliferation of epithelial cells. As this resembles the precancerous proliferative atrophy of human prostates with undifferentiated but intensively replicating epithelial cells, we utilized the PEARKO mice to characterize the epithelial response to castration-induced involution with a focus on identifying the potential role of stromal AR and responsiveness of the androgen-deprived epithelia to the aromatizable androgen testosterone (T) or its nonaromatizable metabolite dihydrotestosterone (DHT). PEARKO and littermate control mice were orchidectomized at 8 wk of age and treated 2 wk later with subdermal implantation of 1-cm Silastic tubing filled with T or DHT for a week. Following castration, the prostatic involution and epithelial apoptosis did not significantly differ between control (intact AR) and PEARKO (only stromal AR) males, demonstrating that prostate epithelial involution following castration is mediated primarily via stromal AR-dependent apoptotic signals. Androgen replacement (T/DHT) for 7 days induced significant growth and epithelial proliferation in all prostate lobes in both control and PEARKO, but full regrowth was observed only in controls treated with T. In PEARKO, prostate androgen (T and DHT) treatment induced significant epithelial cell "shedding" into the lumen, with T treatment resulting in acinar disorganization, cyst formation, and aberrant epithelial structures, described as a "gland within a gland." These data suggest that epithelial AR inactivation during postnatal prostate development sensitizes prostate epithelial cells to paracrine signaling mediated by stromal AR activity leading to indirectly androgen-induced epithelial hyperproliferation and formation of epithelial hyperplastic cysts by aromatizable androgens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app