Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Topographic features retained after antibiotic modification of Ti alloy surfaces: retention of topography with attachment of antibiotics.

Periprosthetic infection is increasingly prevalent in orthopaedics with infection rates of 2% to 15% after total hip arthroplasty. To effectively decrease bacterial attachment, colonization, and subsequent development of periprosthetic infection, we previously described a method to covalently bond vancomycin to smooth Ti alloy surfaces. To attach vancomycin, the Ti surface is first passivated to create a fresh oxide layer. Previously, passivation has been achieved with an H2SO4/H2O2 etch that can destroy the topography of the underlying implant. Passivation by hydrothermal aging as well as by H2SO4/H2O2 incubation produced a robust oxide layer, but only hydrothermal aging left the geometry unaltered. These hydrothermally passivated Kirschner wires and smooth or beaded Ti surfaces were chemically coupled with vancomycin. Antibiotic-coupled samples representing all three geometries were uniformly covered with antibiotic, resisted colonization by Staphylococcus aureus for longer than 8 hours, and retained their biocompatibility as assessed by normal attachment and morphology of preosteocytic MLO-A5 cells. Using this technique, we believe it is possible to passivate many complex implant designs/geometries as a first step toward covalent bonding of antibiotics or other bioactive factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app