Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cell density-dependent inhibition of epidermal growth factor receptor signaling by p38alpha mitogen-activated protein kinase via Sprouty2 downregulation.

Contact inhibition is a fundamental process in multicellular organisms aimed at inhibiting proliferation at high cellular densities through poorly characterized intracellular signals, despite availability of growth factors. We have previously identified the protein kinase p38alpha as a novel regulator of contact inhibition, as p38alpha is activated upon cell-cell contacts and p38alpha-deficient cells are impaired in both confluence-induced proliferation arrest and p27(Kip1) accumulation. Here, we establish that p27(Kip1) plays a key role downstream of p38alpha to arrest proliferation at high cellular densities. Surprisingly, p38alpha does not directly regulate p27(Kip1) expression levels but leads indirectly to confluent upregulation of p27(Kip1) and cell cycle arrest via the inhibition of mitogenic signals originating from the epidermal growth factor receptor (EGFR). Hence, confluent activation of p38alpha uncouples cell proliferation from mitogenic stimulation by inducing EGFR degradation through downregulation of the EGFR-stabilizing protein Sprouty2 (Spry2). Accordingly, confluent p38alpha-deficient cells fail to downregulate Spry2, providing them in turn with sustained EGFR signaling that facilitates cell overgrowth and oncogenic transformation. Our results provide novel mechanistic insight into the role of p38alpha as a sensor of cell density, which induces confluent cell cycle arrest via the Spry2-EGFR-p27(Kip1) network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app