Journal Article
Review
Add like
Add dislike
Add to saved papers

Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications.

The kidneys play a major role in the regulation of glucose in humans, reabsorbing 99% of the plasma glucose that filters through the renal glomeruli tubules. The glucose transporter, SGLT2, which is found primarily in the S1 segment of the proximal renal tubule, is essential to this process, accounting for 90% of the glucose reabsorption in the kidney. Evidence has suggested that selective inhibition of SGLT2 induces glucosuria in a dose-dependent manner and may have beneficial effects on glucose regulation in individuals with type II diabetes. Preclinical data with SGLT2 inhibitors, such as dapagliflozin and sergliflozin, show that these compounds are highly selective inhibitors for SGLT2, have beneficial effects on the glucose utilization rate, and reduce hyperglycemia while having no hypoglycemic adverse effects. Clinical research remains to be carried out on the long-term effects of glucosuria and other potential effects of this class of drug. Nonetheless, these compounds represent a very promising approach for the treatment of diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app