JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance.

OBJECTIVES: This study sought to evaluate indexes of pulmonary artery (PA) stiffness in patients with pulmonary hypertension (PH) using same-day cardiac magnetic resonance (CMR) and right heart catheterization (RHC).

BACKGROUND: Pulmonary artery stiffness is increased in the presence of PH, although the relationship to PH severity has not been fully characterized.

METHODS: Both CMR and RHC were performed on the same day in 94 patients with known or suspected PH. According to the RHC, patients were classified as having no PH (n = 13), exercise-induced PH (EIPH) only (n = 6), or PH at rest (n = 75). On CMR, phase-contrast images were obtained perpendicular to the pulmonary trunk. From CMR and RHC data, PA areas and indexes of stiffness (pulsatility, compliance, capacitance, distensibility, elastic modulus, and the pressure-independent stiffness index beta) were measured at rest.

RESULTS: All quantified indexes showed increased PA stiffness in patients with PH at rest in comparison with those with EIPH or no PH. Despite the absence of significant differences in baseline pressures, patients with EIPH had lower median compliance and capacitance than patients with no PH: 15 (interquartile range: 9 to 19.8) mm2/mm Hg versus 8.4 (interquartile range: 6 to 10.3) mm2/mm Hg, and 5.2 (interquartile range: 4.4 to 6.3) mm3/mm Hg versus 3.7 (interquartile range: 3.1 to 4.1) mm3/mm Hg, respectively (p < 0.05). The different measurements of PA stiffness, including stiffness index beta, showed significant correlations with PA pressures (r2 = 0.27 to 0.73). Reduced PA pulsatility (<40%) detected the presence of PH at rest with a sensitivity of 93% and a specificity of 63%.

CONCLUSIONS: Pulmonary artery stiffness increases early in the course of PH (even when PH is detectable only with exercise and before overt pressure elevations occur at rest). These observations suggest a potential contributory role of PA stiffness in the development and progression of PH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app