JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Altered dendritic cell phenotype in response to Leishmania amazonensis amastigote infection is mediated by MAP kinase, ERK.

Initiation of productive immune responses against Leishmania depends on the successful transition of dendritic cells (DC) from an immature to a mature phenotype. This process is characterized by high CD40 surface expression as well as interleukin-12 production, which are frequently seen in response to L. major infection. In vivo footpad infection of C3HeB/FeJ mice for 7 days with L. amazonensis promoted an immature CD11c(+) DC phenotype characterized by both significantly low CD40 surface expression and significantly decreased interleukin-12p40 production compared with L. major infection of these same mice. In vitro infection of bone marrow-derived dendritic cells with L. amazonensis amastigotes resulted in rapid and significant phosphorylation of the mitogen activated protein kinase, extracellular signal-regulated kinase 1/2, observed within minutes of exposure to the parasite. Infection with L. amazonensis promastigotes led to increased 1/2 phosphorylation after 4 hours of infection compared with L. major infection, which correlated with promastigote transformation into amastigotes. Treatment of bone marrow-derived dendritic cells with a mitogen activated protein kinase kinase-specific inhibitor, PD98059, led to regained surface CD40 expression and interleukin-12p40 production following L. amazonensis amastigote infection compared with non-treated, infected DC. Treatment of L. amazonensis-infected mice with the highly-specific mitogen activated protein kinase kinase inhibitor, CI-1040, enhanced surface CD40 expression on CD11c(+) DC obtained from the draining lymph node. L. amazonensis amastigotes, through activation of extracellular signal-regulated kinase 1/2, inhibit the ability of DC to undergo proper maturation both in vitro and in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app