In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional type I vanilloid receptor expression by substantia gelatinosa neurons of trigeminal subnucleus caudalis in mice.

Neuroscience Letters 2009 March 21
The aim of this study was to investigate the existence of functional TRPV1 receptor by substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc), which is implicated in the processing of nociceptive information from orofacial regions. The direct membrane effects of a TRPV1 receptor agonist, capsaicin, were examined by gramicidin-perforated patch clamp recording using a trigeminal brainstem slice preparation containing Vc from immature mice. Capsaicin (1-2 microM) induced a membrane depolarization in 58 out of 71 SG neurons tested (82%). Capsaicin-induced depolarization was maintained in 20 out of 32 (63%) SG neurons in the presence of amino acid and voltage-dependent sodium channel blockers (10 microM CNQX, 20 microM AP-5, 0.5 microM TTX, 50 microM picrotoxin and 2 microM strychnine). In addition, capsaicin-induced depolarization was maintained in the presence of L-732,138 (1 microM), an NK1 receptor antagonist, in 14 out of 17 neurons (82%) tested. The capsaicin-induced depolarizing effects were blocked by a TRPV1 receptor antagonist, capsazepine (10 microM). These results indicate that a sub-population of SG neurons in the Vc express functional TRPV1 receptors, and that capsaicin can directly activate the TRPV1 receptor on the postsynaptic membrane of SG neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app