Gcm protein degradation suppresses proliferation of glial progenitors

Margaret Su-chun Ho, Hungwen Chen, Minghan Chen, Cécile Jacques, Angela Giangrande, Cheng-Ting Chien
Proceedings of the National Academy of Sciences of the United States of America 2009 April 21, 106 (16): 6778-83
Gliogenesis in animal development is spatiotemporally regulated so that correct numbers of glia are present to support various neuronal functions. During Drosophila embryonic development, the glial regulatory gene, glial cell missing/glial cell deficient (gcm/glide), promotes glial cell fate and differentiation. Here we describe the ubiquitin-proteasome regulation of the Gcm protein and the consequence in gliogenesis without timely degradation of Gcm. Gcm binds to 2 F-box proteins, Supernumerary limbs (Slimb) and Archipelago (Ago), adaptors of SCF E3 ubiquitin ligases. Ubiquitination and proteasomal degradation of Gcm depend on slimb and ago. In slimb and ago double mutants, Gcm protein levels are enhanced. Concomitantly, glial cell numbers increase owing to proliferation, which can be phenocopied by Gcm overexpression only at the onset of glial differentiation. The glial lineage 5-6A in slimb ago mutants displays excess glial progenies and enhanced Gcm protein levels. We propose that downregulation of Gcm protein levels by Slimb and Ago is required for glial progenitors to exit the cell cycle for differentiation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"