Affinity ligands for immunoglobulins based on the multicomponent Ugi reaction

Jonathan M Haigh, Abid Hussain, Michael L Mimmack, Christopher R Lowe
Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 2009 May 15, 877 (14): 1440-52
This report describes a novel use of the four-component Ugi reaction to generate a solid-phase library suitable for the purification of immunoglobulins and their fragments by affinity chromatography. An aldehyde-functionalised Sepharose solid-support constituted one component in the four-component reaction, whereas the other three components (a carboxylic acid, a primary or secondary amine and an isonitrile) were varied in a combinatorial fashion to generate a tri-substituted peptoidal scaffold structure which provides a degree of rigidity and functionality suitable for rational investigation of immunoglobulin binding. The Ugi ligand library was initially screened chromatographically against whole human IgG and its fragments (Fc and Fab) to yield a Fab-specific lead ligand based on its ability to bind Fab differentially over Fc. Preparative chromatography of IgG from human serum showed 100% of IgG was adsorbed from the 20mg/ml crude stock and subsequently eluted with a purity of 81.0% as determined by SDS-PAGE analysis under non-optimised conditions. High purity Fab and IgG isolation was achieved from both yeast and E. coli host cell proteins according to silver-stained SDS-PAGE lane densitometry. The ligand density and spacer-arm chemistry of the immobilised ligand was optimised to define an affinity adsorbent which binds 73.06 mg IgG/ml moist gel (dynamic binding capacity at 10% breakthrough) and a static binding capacity of 16.1+/-0.25mg Fab/ml moist resin displaying an affinity constant K(d)=(2.6+/-0.3)x10(-6)M. The lead candidate was modelled in silico and docked into a human Fab fragment (PDB: 1AQK) to suggest a putative binding interface to the constant CH(1)-CL Fab terminal through six defined hydrogen bond interactions together with putative hydrophobic interactions.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"