JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

FRET and competing processes between conjugated polymer and dye substituted DNA strands: a comparative study of probe selection in DNA detection.

Biomacromolecules 2009 May 12
Fluorescence resonance energy transfer (FRET) between water-soluble conjugated polymer, poly-(9,9-bis(6'-N,N,N-trimethylammonium)-hexyl-fluorene phenylene) bromide, and ssDNA's labeled with four different types of dyes (Pacific-blue, Alexa-fluor 430, Fluorescein, and ROX) has been investigated. The effect of spectral overlap and Stokes-shift on the efficiency and properties of FRET were studied. In the DNA sequence detection technique that using cationic conductive polymer and the negatively charged DNA the electrostatic interaction leads to strong aggregation. The effective concentration of these aggregates is quite high leading to strong self-absorption. In this case, labeling with small Stokes shift dyes shows a strong output emission limitation even in extremely dilute system. The steady state fluorescence quenching of the CCP by FRET reveals that the competition between FRET and self-absorption plays a major role when accounting for the FRET ratio. Time-resolved fluorescence lifetime analysis was carried out to measure the energy transfer between the donor and the acceptor excluding self-absorption and quenching by ground-state complex formation. Time-resolved analysis indicates only around 30% of the total CCP excited-state population is quenched by FRET, whereas 55% is quenched by the DNA/buffer solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app