JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats.

OBJECTIVE: The present study was performed to characterize the autoregulatory efficiency of renal blood flow and glomerular filtration rate and the pressure-natriuresis relationship in transgenic rats with inducible angiotensin II (ANG II)-dependent hypertension (Cyp1a1-Ren-2 rats).

METHODS: The renin gene was induced in Cyp1a1-Ren-2 rats through dietary administration of the natural xenobiotic indole-3-carbinol (I3C, 0.3%) for 12 and 24 h, respectively. Noninduced rats served as controls. Anesthetized rats were prepared for renal function studies and an aortic clamp was placed above the junction of the left renal artery to regulate the level of renal arterial pressure. Plasma renin activity, ANG II and aldosterone levels were measured at the end of the experiment by radioimmunoassay.

RESULTS: Administration of I3C resulted in progressive increases in plasma renin activity and plasma and kidney ANG II levels; however, it did not significantly alter aldosterone levels as compared with those in noninduced rats. I3C induction for 12 h did not cause significant changes in blood pressure as compared with those in noninduced rats. I3C induction for 24 h elicited a significant rise in blood pressure. Twelve-hour I3C induction caused an impairment of the autoregulatory efficiency of renal blood flow and glomerular filtration rate and of the pressure-natriuresis relationship as compared with that in noninduced rats. In addition, 24 h I3C induction of the renin gene resulted in a marked reduction in renal blood flow and glomerular filtration rate and a further impairment of the pressure-natriuresis mechanism as compared with that in noninduced rats.

CONCLUSION: Our findings indicate that an impairment of the pressure-natriuresis mechanism precedes the development of ANG II-dependent hypertension in Cyp1a1-Ren-2 transgenic rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app