Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hydrophilic ester-bearing chlorogenic acid binds to a novel domain to inhibit xanthine oxidase.

Planta Medica 2009 September
Caffeic acid is a xanthine oxidase (XO) inhibitor that binds to the molybdopterin region of its active site. Caffeic acid phenethyl ester (CAPE) has higher hydrophobicity and exhibits stronger inhibition potency toward XO. Chlorogenic acid is a quinyl ester of caffeic acid that has increased hydrophilicity and also shows stronger XO inhibitory activity compared with caffeic acid. Caffeic acid and CAPE showed competitive inhibition against XO, whereas chlorogenic acid displayed mixed-type inhibition, implying that it binds to sites other than the active site. Structure-based molecular modeling was performed to account for the different binding characteristics of the hydrophobic and hydrophilic esters of caffeic acid. Chlorogenic acid showed weak binding to the molybdopterin region of XO, while it more strongly bound the flavin adenine dinucleotide region than it did the molybdopterin region. These results provide the basis for interactions of caffeic acid analogues with XO via various binding domains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app