Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Greenhouse gas fluxes in an eastern Corn Belt soil: weather, nitrogen source, and rotation.

Relative contributions of diverse, managed ecosystems to greenhouse gases are not completely documented. This study was conducted to estimate soil surface fluxes of carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) as affected by management practices and weather. Gas fluxes were measured by vented, static chambers in Drummer and Raub soil series during two growing seasons. Treatments evaluated were corn cropped continuously (CC) or in rotation with soybean (CS) and fertilized with in-season urea-ammonium nitrate (UAN) or liquid swine manure applied in the spring (SM) or fall (FM). Soybean (SC) rotated with CS and restored prairie grass (PG) were also included. The CO(2) fluxes correlated (P 8 kg ha(-1) yr(-1) in CCSM; differences were driven by pulse emissions after N fertilization in concurrence with major rainfall events. These results suggest fall manure application, corn-soybean rotation, and restoration of prairies may diminish N(2)O emissions and hence contribute to global warming mitigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app