Add like
Add dislike
Add to saved papers

Flavin-sensitized photo-oxidation of lysozyme and serum albumin.

The excited state processes of riboflavin, flavin mononucleotide and flavin adenine dinucleotide in argon-saturated aqueous solution were studied in the presence of lysozyme or bovine serum albumin (BSA). UV-Vis absorption and fluorescence spectroscopy indicates that the noncovalent flavin-protein binding is relatively weak. Quenching of the flavin triplet state by BSA, observed by time-resolved photolysis, is less efficient than by lysozyme. Light-induced oxidation of the two proteins and reduction of the three flavins were studied. The quantum yields of the former and latter in the absence of oxygen are up to 0.1 and 0.04, respectively. The effects of pH and sensitizer and protein concentrations were examined in greater detail. The proposed reaction is electron transfer from the tryptophan moiety to the flavin triplet rather than excited singlet state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app