JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

rhBMP-2 enhances the bone healing response in a diabetic rat segmental defect model.

OBJECTIVE: Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been shown to enhance new bone formation in fracture and bone defect models in both normal and diabetic rats. Effects of rhBMP-2 in a segmental femoral defect model in diabetes mellitus (DM) BB Wistar rats have not been reported.

METHODS: Collagen sponge soaked with either buffer or rhBMP-2 was inserted in a mid-diaphyseal 3.0-mm defect fixed with polyimide plate and stainless steel screws, in 62 DM BB Wistar rats. Progress of new bone formation in the defect was monitored with serial radiographs every 2 weeks. Histomorphometric analysis of the new bone formation was done on undecalcified sections of the extracted femurs at 3 and 6 weeks post surgery. Further analysis of the new bone was done by assessment of neoangiogenesis using immunohistochemical staining for Platelet endothelial cell adhesion molecule-1. Mechanical testing was performed at 9 weeks to assess the new bone with respect to 4 different parameters of mechanical and structural properties of bone.

RESULTS: Radiographs assessed over a 6-point grading system showed statistically significant improvement in scores in rhBMP-2-treated rats at 6 weeks (P < 0.001). Histomorphometric analysis showed statistically significant increase in area of new bone formation between rats treated with rhBMP-2 compared with buffer at both 3 and 6 weeks (P < 0.001). On Platelet endothelial cell adhesion molecule-1 staining at 3 weeks, the mean number of vessels in rhBMP-2-treated DM rats was 12.76 +/- 5.43/mm(2) compared with 4.49 +/- 1.89/mm(2) in buffer treated DM rats (P = 0.034). On mechanical testing, all 4 DM/buffer rats had nonunion. In DM/rhBMP-2 rats, the torque to failure and torsional rigidity values were 393.57 +/- 233.3 (P < 0.03) and 29,711 +/- 6224 (P < 0.002), respectively.

CONCLUSIONS: Clearly, although DM has a known impact on osseous healing, its negative effects are ameliorated with the application of the rhBMP-2-collagen carrier and demonstrates the potential clinical role of this adjunct in the clinical arena.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app