JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Proteomic signatures of epidermal growth factor receptor and survival signal pathways correspond to gefitinib sensitivity in head and neck cancer.

PURPOSE: Gefitinib targeting of the epidermal growth factor receptor (EGFR) has shown limited activity in clinical trials of head and neck squamous cell carcinoma (HNSCC). To investigate the underlying molecular mechanism, the proteomic signatures and responses of EGFR and downstream signals have been studied in a panel of HNSCC cell lines and tumor specimens pre- and post-gefitinib treatment.

EXPERIMENTAL DESIGN: The IC(50) of gefitinib for HNSCC cell lines were determined using 3-(4,5-dmethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay. The effects of gefitinib on activation of EGFR and downstream signaling molecules were determined by Western blot, ELISA, and reverse-phase protein microarray (RPMA). The biomarkers involved in the signaling pathways were examined in HNSCC tumor specimens from patients in a phase I gefitinib trial.

RESULTS: In vitro, gefitinib inhibited cell proliferation with differing IC(50), and suppressed activation of EGFR and downstream signaling molecules protein kinase B (AKT), extracellular signal-regulated kinase 1/2, signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappaB. The drug sensitivity was statistically correlated with activation of phosphorylated AKT (p-AKT) and phosphorylated STAT3 (p-STAT3) detected by ELISA, and consistent with results measured by RPMA. In patient samples, a broad suppression of activation of EGFR and downstream signaling molecules was observed in a molecular responder patient, in contrast to a lack of inhibition or increased activation of biomarkers in different pathways in nonresponder patients.

CONCLUSIONS: Gefitinib sensitivity is correlated with p-AKT and p-STAT3 activation in HNSCC cell lines and tumor specimens. p-AKT and p-STAT3 could serve as potentially useful biomarkers and drug targets for further development of novel therapeutic agents for HNSCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app