JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes.

Calmodulin (CaM) and Ca(2+)/CaM-dependent protein kinase II (CaMKII) play important roles in the development of heart failure. In this study, we evaluated the effects of CaM on mitochondrial membrane potential (DeltaPsi(m)), permeability transition pore (mPTP) and the production of reactive oxygen species (ROS) in permeabilized myocytes; our findings are as follows. (1) CaM depolarized DeltaPsi(m) dose-dependently, but this was prevented by an inhibitor of CaM (W-7) or CaMKII (autocamtide 2-related inhibitory peptide (AIP)). (2) CaM accelerated calcein leakage from mitochondria, indicating the opening of mPTP, however this was prevented by AIP. (3) Cyclosporin A (an inhibitor of the mPTP) inhibited both CaM-induced DeltaPsi(m) depolarization and calcein leakage. (4) CaM increased mitochondrial ROS, which was related to DeltaPsi(m) depolarization and the opening of mPTP. (5) Chelating of cytosolic Ca(2+) by BAPTA, the depletion of SR Ca(2+) by thapsigargin (an inhibitor of SERCA) and the inhibition of mitochondrial Ca(2+) uniporter by Ru360 attenuated the effects of CaM on mitochondrial function. (6) CaM accelerated Ca(2+) extrusion from mitochondria. We conclude that CaM/CaMKII depolarized DeltaPsi(m) and opened mPTP by increasing ROS production, and these effects were strictly regulated by the local increase in cytosolic Ca(2+) concentration, initiated by Ca(2+) releases from the SR. In addition, CaM was involved in the regulation of mitochondrial Ca(2+) homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app