JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fractalkine functions as a chemoattractant for osteoarthritis synovial fibroblasts and stimulates phosphorylation of mitogen-activated protein kinases and Akt.

Fractalkine (FKN/CX3CL1) has been detected in synovial fluids from osteoarthritis (OA) patients. Additionally, low-level expression of the FKN receptor, CX3CR1, has been demonstrated in OA synovial lining. This study aimed to determine a biological function for this ligand/receptor pair in OA and to assess a potential signalling mechanism for FKN in this predominant synovial lining cell type, using chemotaxis assays, Western blotting and F-actin staining. Chemotaxis assays demonstrate that the chemokine domain of FKN effectively induces migration of OA fibroblasts. Consistent with this finding, visualization of F-actin demonstrates that 1 or 10 nM FKN induces noticeable reorganization of cytoskeletal structure in OA fibroblasts after 30 min stimulation with a maximal enhancement at approximately 2 h. In addition, Western blotting analysis demonstrates that FKN stimulates phosphorylation of the mitogen-activated protein (MAP) kinases p38, c-Jun N-terminal kinase (JNK) and extracellular-regulated kinase (ERK) 1/2 as well as the serine-threonine kinase Akt at Ser 473 and Thr 308. All these phosphorylation events occur in a time-dependent manner, with little or no activation within 1 min, and maximal activation occurring typically between 5 and 30 min. Moreover, inhibition of ERK 1/2 significantly reduces FKN-induced OA fibroblast migration. These results suggest that FKN is a novel chemoattractant for OA fibroblasts, consistent with FKN-induced alterations in cytoskeletal structure. In addition, FKN induces OA fibroblast signalling via the MAP kinases p38, JNK and ERK 1/2, as well as Akt.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app