JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs.

We have identified a plasma membrane Na(+)/H(+) antiporter gene from tomato (Solanum lycopersicum), SlSOS1, and used heterologous expression in yeast to confirm that SlSOS1 was the functional homolog of AtSOS1. Using post-transcriptional gene silencing, we evaluated the role played by SlSOS1 in long-distance Na(+) transport and salt tolerance of tomato. Tomato was used because of its anatomical structure, more complex than that of Arabidopsis, and its agricultural significance. Transgenic tomato plants with reduced expression of SlSOS1 exhibited reduced growth rate compared to wild-type (WT) plants in saline conditions. This sensitivity correlated with higher accumulation of Na(+) in leaves and roots, but lower contents in stems of silenced plants under salt stress. Differential distribution of Na(+) and lower net Na(+) flux were observed in the xylem sap in the suppressed plants. In addition, K(+) concentration was lower in roots of silenced plants than in WT. Our results demonstrate that SlSOS1 antiporter is not only essential in maintaining ion homeostasis under salinity, but also critical for the partitioning of Na(+) between plant organs. The ability of tomato plants to retain Na(+) in the stems, thus preventing Na(+) from reaching the photosynthetic tissues, is largely dependent on the function of SlSOS1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app