JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons.

The deposition of amyloid-beta (Abeta) contributes to the pathogenesis of Alzheimer's disease. Even at low levels, Abeta may interfere with various signaling cascades critical for the synaptic plasticity that underlies learning and memory. Brain-derived neurotrophic factor (BDNF) is well known to be capable of inducing the synthesis of activity-regulated cytoskeleton-associated protein (Arc), which plays a fundamental role in modulating synaptic plasticity. Our recent study has demonstrated that treatment of fibrillar Abeta at a nonlethal level was sufficient to impair BDNF-induced Arc expression in cultured rat cortical neurons. In this study, BDNF treatment alone induced the activation of the phosphatidylinositol 3-kinase-Akt-mammlian target of rapamycin (PI3K-Akt-mTOR) signaling pathway, the phosphorylation of eukaryotic initiation factor 4E binding protein (4EBP1) and p70 ribosomal S6 kinase (p70S6K), the dephosphorylation of eukaryotic elongation factor 2 (eEF2), and the expression of Arc. Interrupting the PI3K-Akt-mTOR signaling pathway by inhibitors prevented the effects of BDNF, indicating the involvement of this pathway in BDNF-induced 4EBP1 phosphorylation, p70S6K phosphorylation, eEF2 dephosphorylation, and Arc expression. Nonlethal Abeta pretreatment partially blocked these effects of BDNF. Double- immunofluorescent staining in rat cortical neurons further confirmed the coexistence of eEF2 dephosphorylation and Arc expression following BDNF treatment regardless of the presence of Abeta. These results reveal that, in cultured rat cortical neurons, Abeta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in BDNF-induced Arc expression. Moreover, this study also provides the first evidence that there is a close correlation between BDNF-induced eEF2 dephosphorylation and BDNF-induced Arc expression. (c) 2009 Wiley-Liss, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app