Add like
Add dislike
Add to saved papers

Quantitative HPLC determination and extraction of anthraquinones in Senna alata leaves.

A reversed-phase high-performance liquid chromatographic method is described for the simultaneous determination of four anthraquinones: rhein, aloe-emodin, emodin, and chrysophanol in Senna alata leaves. The method involves the use of a TSK-gel ODS-80Tm column (5 microm, 4.6 x 150 mm) at 25 degrees C with the mixture of methanol and 2% aqueous acetic acid (70:30, v/v) as the mobile phase and detection at 254 nm. The parameters of linearity, precision, accuracy, and specificity of the method were evaluated. The recovery of the method is 100.3-100.5%, and linearity (r(2) > 0.9998) was obtained for all anthraquinones. A high degree of specificity as well as repeatability and reproducibility (relative standard deviation values less than 5%) were also achieved. The solvent for extraction of anthraquinones from S. alata leaves was examined in order to increase the anthraquinone content of the leaf extract. It was found that a solution of 5% hydrochloric acid (v/v), 5% ferric chloride (w/v), and 15% water in methanol (v/v) was capable of increasing the anthraquinone content in the leaf extract up to 1.67% (w/w).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app