JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fluoxetine protects against monocrotaline-induced pulmonary arterial hypertension: potential roles of induction of apoptosis and upregulation of Kv1.5 channels in rats.

1. Suppressing apoptosis and downregulating K(+) channels in pulmonary artery smooth muscle cells (PASMC) have been implicated in the development of pulmonary vascular medial hypertrophy and pulmonary arterial hypertension (PAH). Previous studies have shown that selective serotonin re-uptake inhibitors (SSRIs) protected against PAH. The aim of the present study was to investigate the involvement of Kv1.5 channels and apoptosis in the protective effect of the SSRI fluoxetine against PAH. 2. Monocrotaline (MCT) was used to establish PAH in Wistar rats. Fluoxetine (2 and 10 mg/kg per day) was administered by gavage once a day for 3 weeks. Three weeks after the induction of PAH by MCT, pulmonary haemodynamic measurements and pulmonary artery morphological assessments were undertaken, along with detection of apoptosis and Kv1.5. 3. Fluoxetine (2 and 10 mg/kg per day) decreased pulmonary artery pressure, reduced the right ventricular index and inhibited the increase in medial wall thickness of pulmonary arteries in established PAH. Fluoxetine (10 mg/kg per day) reduced the expression of Bcl-2 and Bcl-xL protein, increased the expression of cleaved caspase 3 protein and enhanced the expression of Kv1.5 protein and mRNA in pulmonary arteries. Furthermore, fluoxetine (10 mg/kg per day) significantly suppressed proliferation and enhanced apoptosis of PASMC in MCT-induced PAH. 4. In conclusion, fluoxetine protects against MCT-induced PAH by suppressing PASMC proliferation, inducing PASMC apoptosis and upregulating Kv1.5 channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app