Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells.

BACKGROUND AND PURPOSE: Traditionally, the stem and root bark of Ulmus davidiana var. japonica (Ulmaceae) have been known to be anti-inflammatory in Korea. Anti-inflammatory effects of torilin, isolated from this plant and the underlying mechanisms were examined by using lipopolysaccharide (LPS)-stimulated microglial BV2 cells.

EXPERIMENTAL APPROACH: The cells were treated with torilin prior to LPS exposure and the effects on pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and a pro-inflammatory cytokine, interleukin-1beta (IL-1beta) were analysed by RT-PCR, Western blot or elisa. To reveal the mechanism of action of torilin we investigated the involvement of mitogen-activated protein kinase (MAPK) cascades and their downstream transcription factors, nuclear factor-kappaB (NF-kappaB) and cyclic AMP-responsive element (CRE)-binding protein (CREB).

KEY RESULTS: Torilin significantly reduced the LPS-induced expression of iNOS, COX-2 and IL-1beta, and the subsequent release of NO, prostaglandin E(2) and IL-1beta into culture medium. LPS stimulation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 MAPK was inhibited by torilin. In addition, the inhibitory effect of torilin on NF-kappaB and CREB was shown by torilin-mediated recovery of LPS-induced degradation of inhibitor kappaB-alpha and suppression of LPS-induced phosphorylation of CREB respectively.

CONCLUSION AND IMPLICATIONS: This study indicates that torilin inhibited LPS-induced iNOS, COX-2 and IL-1beta via down-regulation of ERK1/2, p38 MAPK, NF-kappaB and CREB and suggests that torilin has a potential as an anti-inflammatory drug candidate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app