JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Moringa oleifera leaf extract prevents isoproterenol-induced myocardial damage in rats: evidence for an antioxidant, antiperoxidative, and cardioprotective intervention.

The present study evaluated cardioprotective effect of lyophilized hydroalcoholic extract of Moringa oleifera in the isoproterenol (ISP)-induced model of myocardial infarction. Wistar albino male rats were divided into three groups and orally fed saline once daily alone (sham) or with ISP (ISP control) or ISP with M. oleifera (200 mg/kg), respectively, for 1 month. On days 29 and 30 of administration, rats of the ISP control and M. oleifera-ISP groups were administered ISP (85 mg/kg, s.c.) at an interval of 24 hours. On day 31, hemodynamic parameters (mean arterial pressure [MAP], heart rate [HR], left ventricular end-diastolic pressure [LVEDP], and left ventricular peak positive [(+) LV dP/dt] and negative [(-) LV dP/dt] pressures were recorded. At the end of the experiment, the animals were sacrificed, and hearts were excised and processed for biochemical, histopathological, and ultrastructural studies. Chronic treatment with M. oleifera demonstrated mitigating effects on ISP-induced hemodynamic [HR, (+) LV dP/dt, (-) LV dP/dt, and LVEDP] perturbations. Chronic M. oleifera treatment resulted in significant favorable modulation of the biochemical enzymes (superoxide dismutase, catalase, glutathione peroxidase, lactate dehydrogenase, and creatine kinase-MB) but failed to demonstrate any significant effect on reduced glutathione compared to the ISP control group. Moringa treatment significantly prevented the rise in lipid peroxidation in myocardial tissue. Furthermore, M. oleifera also prevented the deleterious histopathological and ultrastructural perturbations caused by ISP. Based on the results of the present study, it can be concluded that M. oleifera extract possesses significant cardioprotective effect, which may be attributed to its antioxidant, antiperoxidative, and myocardial preservative properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app