JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Noninvasive imaging of tumor integrin expression using (18)F-labeled RGD dimer peptide with PEG (4) linkers.

PURPOSE: Various radiolabeled Arg-Gly-Asp (RGD) peptides have been previously investigated for tumor integrin alpha(v)beta(3) imaging. To further develop RGD radiotracers with enhanced tumor-targeting efficacy and improved in vivo pharmacokinetics, we designed a new RGD homodimeric peptide with two PEG(4) spacers (PEG(4) = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) between the two monomeric RGD motifs and one PEG(4) linker on the glutamate alpha-amino group ((18)F-labeled PEG(4)-E[PEG(4)-c(RGDfK)](2), P-PRGD2), as a promising agent for noninvasive imaging of integrin expression in mouse models.

METHODS: P-PRGD2 was labeled with (18)F via 4-nitrophenyl 2-(18)F-fluoropropionate ((18)F-FP) prosthetic group. In vitro and in vivo characteristics of the new dimeric RGD peptide tracer (18)F-FP-P-PRGD2 were investigated and compared with those of (18)F-FP-P-RGD2 ((18)F-labeled RGD dimer without two PEG(4) spacers between the two RGD motifs). The ability of (18)F-FP-P-PRGD2 to image tumor vascular integrin expression was evaluated in a 4T1 murine breast tumor model.

RESULTS: With the insertion of two PEG(4) spacers between the two RGD motifs, (18)F-FP-P-PRGD2 showed enhanced integrin alpha(v)beta(3)-binding affinity, increased tumor uptake and tumor-to-nontumor background ratios compared with (18)F-FP-P-RGD2 in U87MG tumors. MicroPET imaging with (18)F-FP-P-PRGD2 revealed high tumor contrast and low background in tumor-bearing nude mice. Biodistribution studies confirmed the in vivo integrin alpha(v)beta(3)-binding specificity of (18)F-FP-P-RGD2. (18)F-FP-P-PRGD2 can specifically image integrin alpha(v)beta(3) on the activated endothelial cells of tumor neovasculature.

CONCLUSION: (18)F-FP-P-PRGD2 can provide important information on integrin expression on the tumor vasculature. The high integrin binding affinity and specificity, excellent pharmacokinetic properties and metabolic stability make the new RGD dimeric tracer (18)F-FP-P-PRGD2 a promising agent for PET imaging of tumor angiogenesis and for monitoring the efficacy of antiangiogenic treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app