Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm.

Microbial anodes were constructed with stainless steel electrodes under constant polarisation. The seawater medium was inoculated with a natural biofilm scraped from harbour equipment. This procedure led to efficient microbial anodes providing up to 4A/m(2) for 10mM acetate oxidation at -0.1 V/SCE. The whole current was due to the presence of biofilm on the electrode surface, without any significant involvement of the abiotic oxidation of sulphide or soluble metabolites. Using a natural biofilm as inoculum ensured almost optimal performance of the biofilm anode as soon as it was set up; the procedure also proved able to form biofilms in fully aerated media, which provided up to 0.7A/m(2). The current density was finally raised to 8.2A per square meter projected surface area using a stainless steel grid. The inoculating procedure used here combined with the control of the potential revealed, for the first time, stainless steel as a very competitive material for forming bioanodes with natural microbial consortia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app