JOURNAL ARTICLE

Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance

Nicholas B P Thomas, Iain R Hutcheson, Lee Campbell, Julia Gee, Kathryn M Taylor, Robert I Nicholson, Mark Gumbleton
Breast Cancer Research and Treatment 2010, 119 (3): 575-91
19288272
Caveolin-1 displays both tumour-suppressor and tumour-promoter properties in breast cancer. Using characterised preclinical cell models for the transition of oestrogen-sensitive (WT-MCF-7 cells) to a tamoxifen-resistant (TAM-R cells) phenotype we examined the role caveolin-1 in the development of hormone-resistant breast cancer. The WT-MCF-7 cells showed abundant expression of caveolin-1 which potentiated oestrogen-receptor (ERalpha) signalling and promoted cell growth despite caveolin-1 mediating inhibition of ERK signalling. In TAM-R cells caveolin-1 expression was negligible, repressed by EGF-R/ERK signalling. Pharmacological inhibition of EGFR/ERK in TAM-R cells restored caveolin-1 and also resulted in the emergence of pools of phosphorylated caveolin-1. WT-MCF-7 cells exposed to tamoxifen for upto 12 weeks displayed increased caveolin-1 (peaking by week 2) followed (after week 8) by a marked decrease as the cells progress to develop a stable tamoxifen-resistant phenotype. The targeted down-regulation (siRNA) of caveolin-1 in WT-MCF-7 cells reduced growth but did not affect their sensitivity to tamoxifen, suggesting loss of caveolin-1 alone is not sufficient to confer tamoxifen-resistance. Hyperactivation of EGFR/ERK is a feature of tamoxifen-resistant breast cancer cells, a principal driver of cell growth. Recombinant expression of caveolin-1 in TAM-R cells did not affect EGFR/ERK activity, potentially due to mislocalisation of caveolin-1 through hyperactivation of the mTOR pathway or altered caveolin-1 phosphorylation. This work defines a novel role for caveolin-1 with implications for the clinical course of breast cancer and identifies caveolin-1 as a potential drug target for the treatment of early oestrogen-dependent breast cancers. Further, the loss of caveolin-1 may have benefit as a molecular signature for tamoxifen resistance.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19288272
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"