JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Vitamin C attenuates hypochlorite-mediated loss of paraoxonase-1 activity from human plasma.

Nutrition Research 2009 Februrary
Paraoxonase 1 (PON1) is a cardioprotective enzyme associated with high-density lipoprotein (HDL). We tested the hypothesis that vitamin C protects HDL and PON1 from deleterious effects of hypochlorous acid, a proinflammatory oxidant. In our experiments, HDL (from human plasma) or diluted human plasma was incubated with hypochlorite in either the absence (control) or presence of vitamin C before measuring chemical modification and PON1 activities. Vitamin C minimized chemical modification of HDL, as assessed by lysine modification and accumulation of chloramines. In the absence of vitamin C, chloramines accumulated to 114 +/- 4 micromol/L in HDL incubated with a 200-fold molar excess of hypochlorite; but addition of vitamin C (200 micromol/L) limited formation to 36 +/- 6 micromol/L (P < .001). In plasma exposed to hypochlorite, IC(50) values of 1.2 +/- 0.1, 9.5 +/- 1.0, and 5.0 +/- 0.6 mmol/L were determined for PON1's phosphotriesterase, arylesterase, and (physiologic) lactonase activities, respectively. Vitamin C lessened this inhibitory effect of hypochlorite on PON1 activities. In plasma supplemented with vitamin C (400 micromol/L), PON1 phosphotriesterase activity was 72% +/- 17% of normal after incubation with hypochlorite (2 mmol/L), compared with 42% +/- 6% for unsupplemented plasma (P < .05). Similar effects were seen for other PON1 activities. In some experiments, vitamin C also appeared to reverse hypochlorite-mediated loss of PON1 phosphotriesterase activity; but this effect was not observed for the other PON1 activities. In conclusion, vitamin C attenuated hypochlorite-mediated loss of PON1 activity in vitro and may, therefore, preserve cardioprotective properties of HDL during inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app