JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Thalidomide decreases intrahepatic resistance in cirrhotic rats.

Increased intrahepatic resistance (IHR) within cirrhotic liver is caused by increased endotoxemia, cytokines tumor necrosis factor-alpha (TNF-alpha), vasoconstrictor thromboxane A(2) (TXA(2)), and disrupted microvasculatures. We evaluated the effects of thalidomide-related inhibition of TNF-alpha upon the hepatic microcirculation of cirrhosis in rats. Portal venous pressure (PVP), hepatic TNF-alpha, expression of thromboxane synthase (TXS), and leukocyte common antigen (LCA) were measured in bile-duct-ligated (BDL) rats receiving 1 month of thalidomide (BDL-thalido rats). Portal perfusion pressure (PPP), IHR, and hepatic TXA(2) production were measured in the isolated liver perfusion system. Intravital microscopy was used to examine hepatic microvascular disruptions. In BDL-thalido rats, PVP, PPP, IHR, hepatic TXA(2) and TNF-alpha, hydroxyproline content, expression of TXS and LCA, and LPS-induced leukocyte recruitment were significantly decreased. Conversely, hepatic microvascular density and perfused sinusoids were significantly increased. Thalidomide decreased PVP and IHR by reducing hepatic TXA(2) and improving hepatic microvascular disruptions in rats with biliary cirrhosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app