Add like
Add dislike
Add to saved papers

Role of connective tissue growth factor and its interaction with basic fibroblast growth factor and macrophage chemoattractant protein-1 in skin fibrosis.

Activation of the immune system and abnormal growth of skin fibroblasts cause systemic sclerosis. Growth factors have various biological activities, including mediation of immune reactions. The growth factor family includes basic fibroblast growth factor (bFGF), transforming growth factor-beta (TGF-beta), and connective tissue growth factor (CTGF). CTGF, an important downstream mediator of TGF-beta in fibrosis, has been suggested to play a specific role in fibrotic disorders. We have directed our attention to the role of CTGF in sustaining skin fibrosis. To better understand its effects in vivo, we established an animal model of skin fibrosis induced by exogenous application of growth factors. In this model, bFGF transiently induced subcutaneous fibrosis. Simultaneous injection of bFGF and CTGF increased skin fibrosis compared with a single injection of bFGF. Serial injections of bFGF for 3 days followed by CTGF for 4 days, or of CTGF followed by bFGF, did not cause skin fibrosis but simultaneous injections increased macrophage chemoattractant protein-1 (MCP-1) mRNA expression levels. To further define the mechanisms of skin fibrosis in vivo, bFGF and CTGF were injected simultaneously into MCP-1 knockout mice, resulting in decreased collagen levels in granulation tissues on day 8. The number of inflammatory cells, such as mast cells, macrophages and lymphocytes, was significantly decreased in MCP-1 knockout mice compared with wild-type mice. These results suggest that bFGF induces collagen production by stimulating skin fibroblasts and CTGF cooperates with bFGF. Our results indicate that the induction of MCP-1 is necessary for infiltration of inflammatory cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app