IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modulation of firing activity by ATP in dopamine neurons of the rat substantia nigra pars compacta.

Neuroscience 2009 May 20
ATP acts as a neurotransmitter or co-neurotransmitter in many areas of the CNS and peripheral nervous systems; however, little is known about the expression and functional role of purinoceptors (P2) in midbrain dopaminergic neurons. Therefore, we investigated P2X receptor expression and regulation of spontaneous firing activity in dopaminergic neurons of the substantia nigra pars compacta (SNc) in rats using patch-clamp and Ca(2+)-imaging techniques. In most neurons, application of ATP (1 microM-1 mM) increased firing rate dose-dependently (EC(50)=1.26+/-0.26 microM, n=45). When the P2-receptor agonists such as 2-methylthio-adenosine 5'-triphosphate (2-MeSATP) or ATPgammaS were applied or pressure-applied to the neuron, the firing activity increased together with a rise in cytosolic Ca(2+) concentration ([Ca(2+)]c), but application of beta,gamma-methylene ATP (P2X(1, 3) agonist) or methylthio-adenosine 5'-diphosphate (P2Y(1) agonist) had no effect. In many neurons, the effect of ATP was abolished by the application of the P2-receptor antagonists, suramin or pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). When ATP was applied in a Ca(2+)-free solution, there was no detectable change in [Ca(2+)]c, suggesting that ATP does not release Ca(2+) from intracellular stores. In the single-cell reverse transcription polymerase chain reaction (RT-PCR), we found that 65% of dopaminergic neurons expressed mRNAs for P2X receptors; positive amplifications of P2X(6) (57.1%), P2X(2/6) (25.0%), and P2X(4) mRNA (17.9%), respectively. From the above results, we could conclude that ATP modulates firing activities in the rat SNc dopaminergic neurons, possibly via P2X(2), P2X(2/6), and/or P2X(4) receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app