Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments.

Soybean isoflavones are valued in certain medicines, cosmetics, foods and feeds. Selection for high-isoflavone content in seeds along with agronomic traits is a goal of many soybean breeders. The aim of the study was to identify the quantitative trait loci (QTL) underlying seed isoflavone content in soybean among seven environments in China. A cross was made between 'Zhongdou 27', a soybean cultivar with higher mean isoflavone content in the seven environments (daidzein, DZ, 1,865 microg g(-1); genistein, GT, 1,614 microg g(-1); glycitein, GC, 311 microg g(-1) and total isoflavone, TI, 3,791 microg g(-1)) and 'Jiunong 20', a soybean cultivar with lower isoflavone content (DZ, 844 microg g(-1); GT, 1,046 microg g(-1); GC, 193 microg g(-1) and TI, 2,061 microg g(-1)). Through single-seed-descent, 130 F(5)-derived F(6) recombinant inbred lines were advanced. A total of 99 simple-sequence repeat markers were used to construct a genetic linkage map. Seed isoflavone contents were analyzed using high-performance liquid chromatography for multiple years and locations (Harbin in 2005, 2006 and 2007, Hulan in 2006 and 2007, and Suihua in 2006 and 2007). Three QTL were associated with DZ content, four with GT content, three with GC content, and five with TI content. For all QTL detected the beneficial allele was from Zhongdou 27. QTL were located on three (DZ), three (GC), four (GT) and five (TI) molecular linkage groups (LG). A novel QTL was detected with marker Satt144 on LG F that was associated with DZ (0.0014 > P > 0.0001, 5% < R (2) < 11%; 254 < DZ < 552 microg g(-1)), GT (0.0027 > P > 0.0001; 4% < R (2) < 9%; 262 < GT < 391 microg g(-1)), and TI (0.0011 > P > 0.0001; 4% < R (2) < 15%; 195 < TI < 871 microg g(-1)) across the various environments. A previously reported QTL on LG M detected by Satt540 was associated with TI across four environments and TI mean (0.0022 > P > 0.0001; 3% < R (2) < 8%; 182 < TI < 334 microg g(-1)) in China. Because both beneficial alleles were from Zhongdou 27, it was concluded that these two QTL would have the greatest potential value for marker-assisted selection for high-isoflavone content in soybean seed in China.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app